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We present a linear stability analysis, to second order in initial amplitude, of 
B6nard convection of a Boussinesq fluid in a thin rotating annulus for modest, 
Taylor numbers T ( < lo4). The work is motivated in part by the desire to study 
further a mechanism for maintaining, through horizontal Reynolds stresses 
induced in the convection, the sun’s ‘equatorial acceleration ’, which has been 
demonstrated for a rotating convecting spherical shell by Busse & Durney. 
The annulus is assumed to have stress free, perfectly conducting top and bottom 
(which allows separation of the equations) and non-conducting non-slip sides. 
A laboratory experiment which fulfills these conditions (except perhaps the free 
bottom) is being developed with H. Snyder. 

We study primarily annuli with gap-width to depth ratios a of order unity. 
The close, non-slip side-wallsproduce a number of effectsnot present in the infinite 
plane case, including overstability at  high Prandtl numbers P, and multiple 
minima in Rayleigh number R on the stability boundary. The latter may give 
rise to vacillation. The eigenfunctions for stationary convection for a = 2, 
T 5 2000 clearly show momentum of the same sense as the rotation is transported 
from the inner to the outer half of the annulus, corresponding to transport 
toward equatorial latitudes on the sphere. The complete second-order solutions 
for the induced circulations indeed give faster rotation in the outer half, except 
for large P ( > lo2), in which case thermal stresses dominate. At all P, this differen- 
tial rotation is qualitatively a thermal wind. Overstable convective cells, and 
stationary cells at higher T, induce more complicated differential rotations. 

1. Introduction and summary 
Convection in a rotating annulus driven by an imposed horizontal (radial) 

temperature gradient has received much attention from geophysical fluid 
dynamicists, owing largely to its dynamical similarities to planetary scale flow 
in the terrestrial atmosphere and atmospheres of other planets. In  contrast, 
annulus convection driven by an imposed vertical temperature gradient has been 
studied very little. This problem is, we feel, of interest for studying a possible 
mechanism for producing and maintaining the differential rotation of the sun. 
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The mechanism is basically this: due to Coriolis forces, convective motions 
in a rotating fluid possess non-zero Reynolds stresses which can redistribute 
the angular momentum of solid rotation to give differential rotation. This 
effect has been studied for convection in a spherical shell by Busse (1970) 
using a perturbation expansion model, and by Durney (1970) with a limited 
harmonic non-linear model. The writers have demonstrated the effect in the 
annulus for the case of an ideal (viscosity, thermal diffusivity equal to zero) 
unstably stratified fluid (Davies-Jones & Gilman 1970). We propose here to 
demonstrate this effect in a viscous, thermally conducting fluid contained in an 
annulus. We do this by means ofa normal mode stability analysis carried to second 
order in perturbation amplitudes. 

The thin annulus problem, in addition to being simpler mathematically than 
the spherical shell, also lends itself to analysis by laboratory experiment, although 
an important difficulty will be the simulation of a free bottom boundary. (Simula- 
tion of a free bottom has been done for the non-rotating convection problem by 
Goldstein & Graham 1969). Such an experiment is currently being built with H. 
Snyder, and will be reported on later. 

The annulus gap-width is assumed small enough compared to its mean radius 
so that local Cartesian co-ordinates may be employed. Rotation is assumed small 
enough that centrifugal effects may be ignored. (We discuss the criteria for this 
in more detail in 5 2.) The top and bottom are for simplicity assumed to be stress 
free and perfectly conducting, while the sides are insulating and non-slip. The 
fluid is also treated as Bowsinesq. With these assumptions, the vertical, longi- 
tudinal and time dependence of the perturbations separate out easily, leaving 
ordinary differential equations in the radial or lateral co-ordinate y. These are 
solved by applying full-no-slip boundary conditions at the sides. This problem 
has been solved in the non-rotating case by Davies-Jones (1970). 

Our analysis concentrates on annuli with gap-width to height ratios of order 
unity. The closeness of the no-slip side-walls gives rise to some new and interest- 
ing effects, not seen in the infinite plane case. For example, overstability is shown 
t o  occur at  high Prandtl numbers as well as a t  low ones. Also, overstability sets 
in a t  relatively small Taylor numbers. The side-walls can actually be destabilizing 
at  some Taylor numbers, counteracting the stabilizing effect of rotation. In  
general, the stability boundary is rather complicated, with multiple minima in 
the Rayleigh number as a function of longitudinal wave-number. For some 
Taylor numbers, two distinctly different wave-numbers become unstable at about 
the same Rayleigh number, suggesting the possibility of vacillation in a non-linear 
model or laboratory experiment. As still another effect, in some regions of the 
parameter space, the fist and second stationary unstable modes coalesce into a 
pair of overstable modes. It is shown that this must occur at  all Prandtl numbers. 

In  the spherical problem, Busse & Durney find that with rotation at  modest 
Taylor numbers the most unstable mode is non-axisymmetric and extends from 
pole to pole, being bounded by meridians.? The Coriolis forces acting on these 

t For the sun, if we are talking about global scale cells extending through the convection 
zone, which are acted upon in an eddy diffusive way by the much smaller scale granules and 
supergranules, then the appropriate Taylor number is 5 lo4. 
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banana shaped ‘rolls’ cause them to concentrate angular momentum in equa- 
torial regions. In  the thin annulus, the most unstable modes without rotation 
are somewhat analogous, being nearly transverse rolls (Davies-Jones 1970). 
These modes, so long as they remain stationary, are distorted by Coriolis forces 
for Taylor numbers above about unity depending on aspect ratio. At small and 
moderate Prandtl number ( < lo2), and not too large Taylor number, they con- 
centrate angular momentum in the outer half of the annulus cross section,t 
corresponding to equatorial latitudes on the sphere. The overstable and high 
Taylor number stationary modes produce more complicated differential rotations. 

At large Prandtl numbers ( 2 lo2), the thermal forcing dominates in deter- 
mining the differential rotation in which case the average rotation of the inner 
and outer halves of the annulus is the same. Por all P ,  the forced meridional circu- 
lation is thermally direct (warm fluid rising, cold sinking a t  the same level) 
and the differential rotation can be interpreted qualitatively as a ‘thermal 
wind’. 

It should be emphasized that the analogy between the thin annulus and the 
spherical shell is not precise, for a t  least two reasons. First, the spherical problem 
without rotation is degenerate in that no longitudinal wave-number is selected; 
in the annulus the side-walls do select a particular non-axisymmetric mode. 
Secondly, the spherical shell modes propagate in longitude like Rossby waves; 
in the annulus, any propagation is from the usual kind of convective over- 
stability characteristic of the infinite plane models. 

2. Basic equations and perturbation expansion 
Let us scale all lengths with respect to the depth d of the annulus, with z as 

the dimensionless vertical co-ordinate, y the inward radial or lateral co-ordinate, 
and x parallel to the annulus walls. We define the ratio of gap width to depth to 
be a, and place the annulus in the range 

Therefore, y = - $a corresponds to the outer rim of the annulus. Then we take 
K to be the thermal diffusivity, v the kinematic viscosity, pd the basic tempera- 
ture difference between the bottom and top (assumed negative), a the coefficient 
of volume expansion, g gravity, acting in the negative z direction, and Q the 
rotation rate about the z direction. We denote the dimensionless velocities (scaled 
by K / d )  by u, v, w in the x, y, z directions respectively, the time (scaled by d 2 / K )  as 
t ,  the temperature deviation from linear by 0 (scaled by -pa), and let n (scaled by 
/?/a2) be the deviation from hydrostatic pressure divided by the mean density. 
(n also includes the centrifugal potential that is coupled with the mean density.) 
Then, if we define three dimensionless parameters in addition to the aspect ratio 
a, namely, the Rayleigh number R, the Prandtl number P and the Taylor 
number T, as 

- 4 a G  y <  +&a, O < X < l .  

V 4Wd4 PPd4 P = - ,  T=- R=-- 
KV ’ K vz ’ 

t Inner and outer halves of the annulus cross-section are unequivocally defined in the 
Cartesian limit when rotation is present. 

5-2 
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and define V = ux + vy + wz, where x, y, z are the co-ordinate unit vectors, then 
the non-linear Boussinesq equations of motion, thermodynamics and continuity 
in the rotating system may be written as 

( ,+V.V-PVz)u a = ---+PTiv, an 
ax 

an 

a an 
(at+V.V-PV2)w = --+PRB, az (3) 

(4) 

au av aw -+-+- = 0. 
ax ay ax 

The boundary conditions are, a t  top and bottom, 

a% av _ -  ,w, l3= 0; z = 0 , l )  
ax ’ az 

( 7 )  

Let us now write each dependent variable as the sum of an axisymmetric 
basic state, which we denote by an overbar, and a perturbation or deviation 
from that state, which we denote by a prime. (The perturbations may also be 
axisymmetric although we will not be concerned with them in the second-order 
calculations, since they are not the most unstable first-order perturbations in the 
Cartesian limit; see §3(ii).) Then we assume that we have initially a basic 
state of rest relative to the rotating system, with hydrostatic balance in the 
vertical and a linear vertical temperature gradient, so that u = U = 0, v = V = 0, 
w = W = 0 ,8  = 8 = 0, rr = ?i = 0. The initial growth of perturbations about this 
state, to f i s t  order in perturbation amplitude, is given, from (1)-(5), by 

a0 
aY 

and, at the sides, u,v,w, - = 0, y = f Qa. 

- 

aui avi awl -+-+- = 0, 
ax ay ax 

with the boundary conditions given by ( 6 )  and (7) with primes added. 
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Now, if these perturbations grow, i.e. if convection sets in, their Reynolds 
and thermal stresses will soon force, by non-linear interactions, changes in the 
basic state variables U, E ,  W, 8, ?7. By retaining products of perturbations in the 
expansion of (1)-(5), averaging these equations in x around the annulus, and 
dropping products of basic state variables, which are initially of fourth order, we 
can obtain equations for the initial forms of these forced changes, which are given 

(13) 

by 

av aw 
ay az 
-+- = 0. 

In the above, v2 = a2/ay2 + a2/az2, and the forcing functions G obtained from the 
stresses are defined as follows: 

The boundary equations are again given by (6) and (7), this time with overbars 
applied. 

We can see that, in general, the induced axisymmetric changes in the basic 
state are second order in perturbation amplitudes. 

We still have to justify our neglect of centrifugal effects. For the basic state 
about which we perturb, we accept essentially the argument given by Greenspan 
(1 968, pp. 12-14). That is, we assume gravity is very large compared to the centri- 
fugal force, which, in a thin annulus of mean radius b, requires Fa < 1, where 
F = R2b/g is a rotational Froude number. Then temperature and density in the 
basic state are essentially functions of height only, and the centrifugally in- 
duced circulation is very small. This assumption has been made in almost all 
preceding studies of convection in rotating fluids. 

On the other hand, the centrifugal term may be neglected in the perturbation 
equations, if it is small compared to the Coriolis force in (9). This will be so if 
Th B FR, provided that lzc'l/lO'l 2 1 (we actually find in our solutions that Iu'l 
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is always several times larger than 18’1). Thus, it is possible for centrifugal effects 
t o  be important in the perturbation equations, even though Fa < 1.  Our calcula- 
tions are for T < lo4, R < 5 x lo3 with lo3 2 P 2 With these limits, all 
centrifugal effects can be ignored for typical experimental fluids, such as water, 
air and mercury in an annulus of mean radius 16 cm, with aspect ratios of order 
unity. 

3. First-order linear solutions 

Separable solutions of the form 

(i) Solution procedure 

exp [crt + i kx] ,  1 w’, 6’ [a(y), $(y) sinmz 

u’, v‘, 77’ qy), 6(y), $(y) cos mz - - 

satisfy the boundary conditions at top and bottom. Substitution of (22) into (8)- 
(12), and elimination of variables, yields a single eighth-order equation in y for, 
say, the temperature, which if we assume 

8 

n=l 
8 = K,erngy 

reduces to a biquartic equation with roots r,: 
4 

in which 
X ,  = D212E + m2P2TE - PRDk2, 
X ,  = PR(Pk2 + D) - 2DP12E - (E + 1 2 )  D2 - m2P2T, 
X ,  = 12EP2 + D2 + 2DP(E + 12)  - P2R, 
X ,  = - [2DP+ P2(E + 1 2 ) ] ,  
x, = P2, 

and E 2  = k2+m2, D = cr+P12, E = cr+12. 

(25) 

Now, the boundary conditions at  the sides can only be reduced to two variables, 
say 0 and 6: 

Therefore, we need an additional relation between 0 and 0. We choose 

m i k  D-P- -PT*- 6 [ ( 3 :I 
Since the perturbation equations (8)-( 12) are linear and all operators commute, 
6 must be of the same form as 8, i.e. 

8 

n= 1 
6 = anKnernV, 



Convection in a rotating annulus 71 

where the a, are determined by direct substitution of (23) and (28) into (27). 
Satisfaction of the boundary conditions (26) at the sides is ensured by the vanish- 
ing of the characteristic determinant of the eight equations for K,: 

We consider only the lowest mode in the vertical, i.e. we set m = n (this mode 
is by far the most unstable). We scan (judiciously) through a ,  R, P,  T ,  k, (T 

space for the zeros of the determinant. We then find the constants K ,  by Gaus- 
sian elimination. This gives us $and 0 from (23) and (28), and the other dependent 
variables can be obtained from (8) to (12). 

(ii) Stationary convection 
We limit our study to T < lo4. Figure 1 gives the critical Rayleigh number as 
a function of Taylor number for different aspect ratios a. For a given a,  R, in- 
creases with T as in the infinite plane case. For walls closer together, one must 

5 

1 

0.5 I I 1 I I I I l l  I 1 I 1 1 1 1 1  

1 5 10 50 100 
Ti 

FIGURE 1. Critical Rayleigh number R, ws. Taylor number T for various 
gap-width to depth ratios a. 

go to higher Taylor numbers before rotation has an influence. This is clearly 
because, at low T, lateral diffusion of momentum to the side-walls dominates 
the Coriolis forces. As a consequence, bringing the walls closer together at  some 
Taylor numbers is actually destabilizing as a result of the viscous forces releasing 
energy by inducing additional flow across the isobars. For example, for T' > 2500 
out to at least lo4, we find R, is less for a = 0.5 than for a = co. Similarly, R, is 
less for a = 1 than a = 2 above T w 500. 

As in the non-rotating case (Davies-Jones 1970), the preferred mode at the 
onset of convection is non-axisymmetric in the Cartesian limit. This is in contrast 
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to the results of Koschmieder (1966) and Rossby (1969) for convection in a thin 
layer bounded laterally on the outside by a cylindrical wall. Presumably, in 
thicker annuli in which curvature is important, there is a transition to axisym- 
metric rolls. 

In figure 2, we see that the critical wave-number kc generally increases with T 
as in the a = co case, but a sudden jump to lower k occurs for a = 2.0 in the 
neighbourhood of T = 2000. This happens when a different local minimum of R 

8/ 

7t /’ 

I 1 I I I I 1 1 1 1  I I I I I I l l  
1 5 10 50 1 

Ti+ 
10 

FIGURE 2. Critical azimuthal wave-number k, w. Taylor number Tfor various aspect ratios. 
Dashed extensions indicate k for local minimum in Rayleigh number R that is not the abso- 
lute minimum. 

in the stationary stability boundary becomes the absolute minimum. (The 
stability boundary structure is discussed further below.) Which of the two dis- 
tinctly different modes actually occurs in a non-linear model or experiment 
may be sensitive to initial conditions or previous history of the flow (or to 
temperature dependence of the diffusivities) and there may be vacillation 
between the two modes. 

(iii) Overstability 

The onset of overstability is demonstrated in figure 3, for a = 2.0 and three 
Prandtl numbers P = 7.0, 0.7, 0-025, corresponding approximately to water, 
air, and mercury. We note that overstability is predicted in both air and water, 
contrary to the infinite plane case. It sets in before stationary convection a t  
T 2 120 for air, and T 2 200 for water. Also, mercury becomes overstable a t  a 
considerablylower Taylor number ( w 100) than it does without side-walls ( z 600). 

The critical wave-number for overstability for the three Prandtl numbers, in 
general, increases less rapidly with T than for stationary convection, as without 
side-walls. On the other hand, Ic, actually decreases with T for mercury. 
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Clearly, overstability will be pushed to higher Rayleigh numbers for small a 
due to the viscous side-walls overpowering the Coriolis forces, and we know it 
does not occur first at any R with P > 0.677 for very large a (Chandrasekhar 
1961). Thus there should be, for each P, an optimum aspect ratio for the 
occurrence of overstability. 

As interpreted by Veronis (1966), overstability arises first above a certain 
Taylor number in low Prandtl number fluids so that the Coriolis forces can be 
balanced largely by local accelerations, allowing the pressure forces, which in 
steady convection would partially balance the Coriolis forces, to do more work 

6 1  I 

0.8 

I I I I I I I l l  

Til 
5 10 50 100 0.61 " " '  

FIGURE 3. R, for stationary convection (-) and overstable convection (-.-) for an 
aspect ratio a = 2-0, 00 and Prandtl numbers P = 7-0,0.7,0.025. 

against frictional dissipation. Since there is more dissipation with side-walls than 
without, overstability should cut in at  a lower Taylor number, so long as 
Coriolis forces are not overpowered everywhere by the viscous sides. Veronis 
argues that overstability is prevented for high P because with relatively small 
thermal diffusion w and 8 would get out of phase, reducing potential energy 
release. Evidently, the side-walls constrain such phase shifts in the y direction 
enough that overstability can occur, but it still requires a higher T .  

(iv) Structure of the stability boundary 

In order to show more clearly how the local minima in Rayleigh numbers evolve, 
and how overstability sets in, it is necessary to examine the neighbourhood of the 
stability boundary R(k)  in some detail. Figures 4(a)-(c) give its structure for 
a = 2-0 and T = 1, 10, 100, respectively. 

At T = 1, the rotation has virtually no influence, and the boundaries for 
stationary convection ((T = 0, solid lines) are the same as those found by 
Davies-Jones (1970). In  the regions I, only the lowest mode in y is unstable, 
while, in region 11, there are two stationary unstable modes. Between T = 1 and 
10, the two cr = 0 curves break at  the cross-over point and reconnect in pairs 
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giving distinctly separate regions I (see figure 4(b) ) .  These new boundaries are 
connected at their vertical points by a line on which, except at the ends, (T is non- 
zero but imaginary, i.e. a boundary for overstability (dot-dashed curve). For this 

T=l I T= 10 
8oo t 

700 o- 700 u 
0 1 1 2 3 4 2 3 4 5 

k 

( b )  

I I I I 

1 2 3 4 5 
900 ’ 

0 
k 
(4 

FIGURE 4. Structure of stability boundary for (a )  T = 1 ,  ( b )  T = 10, ( c )  T = 100. -,bound- 
aries for stationary convection; ---- , separation of two stationary unstable modes from 
two overstable modes; -. -, overstable convection boundaries. Regions I, lowest stationary 
unstable mode; 11, two stationary unstable modes; 111, two overstable modes; IY, two 
overstable and one stationary unstable mode. 

small a Taylor number, the curves for P = 0.025, 0.7, and 7 virtually coincide. 
Above this boundary, as one approaches either dashed line from regions 11, the 
two stationary modes coalesce, reaching identical non-zero growth rate u? and 
structure on the dashed line. Crossing into region 111, they acquire equal and 
opposite at, but retain a common o;, corresponding to a pair of overstable modes. 
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Since the position of the stationary convection boundaries is independent of 
Prandtl number, it  is clear from topological considerations that the overstable 
region I11 must exist in some form at all Prandtl numbers. This is quite different 
from the infinite plane case, for which no overstable modes exist at  any R, T 
for P > 1 (Chandrasekhar 1961). 

For still larger T, in particular T = 100 (figure 4(c) ) ,  the left-hand region I 
opens upward, and the overstable boundaries show significant Prandtl number 
dependence. Here, for mercury, overstable and stationary convection set in a t  
virtually the same R, but distinctly different lc. Therefore here, too, we have the 
possibility of vacillation, this time between it stationary and an overstable 
mode. 

If we increase T still further, the two left-hand u = 0 curves coalesce at one 
point, and then break as in figure 4 (b )  thereby forming a second ‘finger shaped’ 
region1 withits ownlocal minimum Randanewregionofoverstability. Theright- 
hand finger moves to higher k, and the first overstability, remaining attached to 
the outermost finger drops down furtherrelative to it, so that, as shownin figure 3, 
overstability sets in first. 

As T is increased further yet, more and more new fingers are formed and mi- 
grate to higher k, etc. Although we have not carried the calculations this far, pre- 
sumably the envelope of local minima approaches the stationary stability 
boundary for no side-walls a t  high T.  The lower a is, the higher T at which the 
asymptotic form is effectively reached. At discrete points during this process, the 
critical Rayleigh number for stationary convection shifts to a new finger, giving 
rise to a sudden drop in Ic, as seen in figure 2. In  general, the further left a finger is, 
the more nodes the eigenfunctions have across the annulus. 

We interpret this behaviour as follows: As T increases, it is harder to retain 
nearly transverse rolls, because Coriolis forces are producing cross annulus flow, 
first tilting the rolls and then deforming them into cells. The inhibiting effects 
of Coriolis forces should be minimized in cells whose x and y dimensions are com- 
parable. Thus, as lc, increases with T, more nodes should appear across the 
annulus in the most unstable modes. Because of the side-walls, this adjustment 
can take place only in discrete jumps. 

(v) Structure of unstable modes 

A typical stationary convection cell structure in the rotating annulus is shown in 
figure 5 (horizontal section in the upper half) for the case R = 1100, T = 100, 
k = 2.8, (u = 2.0944 for P = 7-0), which is approximately the most unstable 
mode at about 10 % supercritical R. This close to R,, the pattern is virtually in- 
dependent of Prandtl number. 

Without rotation, the cells are nearly transverse rolls (Davies-Jones 1970) 
a t  the onset of convection. Positive rotation, then, rotates the velocities and con- 
tours to the right, as we would expect. Looking at figure 5 (a) ,  it is immmediately 
evident from the tilt of the velocity vectors that the horizontal Reynolds stresses 
associated with the cells will transport momentum towards the outer rim of the 
annulus (corresponding to equatorward transport on the sphere); this is true at  all 
levels except z = 8, where the transport vanishes. Consequently, the outer half 
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of the fluid rotates faster, at the expense of the inner half. There will also, of 
course, be vertical structure in the induced differential rotation. 

As the rotation is increased further, the stationary convection pattern breaks 
up into more and more cells between the annulus walls, as the absolute minimum 
R shifts from finger to finger. 

The tilt of the cells at moderate T can be interpreted in terms of vorticity. 
Without rotation, the nearly transverse rolls have a large component of vorticity 

X+ 

FIGURE 5. Structure of stationary convection cell looking down a t  upper half of annulus, 
for the case T = 100, R = 1100, k = 2.8, a = 2.0: (a )  horizontal velocity vectors, ( b )  vertical 
motion, ( c )  temperature, (d )  pressure contours. Patterns are virtually the same for all 
P in range 10-3 < P < at least. 

in the y direction. The x component of the vorticity equation predicts that 
through the term+PT4 au'laz, the y vorticity associated with au'las will be 
turned into the x direction by the Coriolis force so that, for au'laz positive, the 
x vorticity induced is also positive. Thus the horizontal vorticity vector and 
consequently the convective roll are rotated or 'tilted' to the right. When the 
tilt gets sufficiently large, the roll is a less efficient converter of energy and so 
sets in at  a higher Rayleigh number than a mode with less tilt but more nodes 
across the annulus. 

For a given R, k, T, the two overstable cells, which propagate with equal speeds 
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in opposite directions along the annulus, have horizontal cell structures that are 
identical when one is rotated by 180’ about the z direction. In the range 

102 6 T 104, 

these cells are highly asymmetric about y = 0, being concentrated near either the 
inner or the outer rim. The mode near the outer (inner) rim propagates in the 
negative (positive) z direction opposite to (in the same sense as) the basic rotation. 

It is probable that effects not included in the linear stability theory will act to 
select the relative amplitudes of the two overstable modes. Thus, it is difficult 
to predict what the resulting observed circulation would look like. 

4. Second-order solutions 
(i) Method of solution 

It is simplest to solve first for the forced mean meridional circulation V, G. If 
we define a stream function $ such that ?j = a$/&, W = - a$lay, and let 

z1 = apt-PV2, z2 = a p t  - V 2 ,  

we may derive a single equation for $ from (1 3) to (1  7), namely 

If  we use the boundary conditions on the perturbations to evaluate the forcing 
functions G at the boundaries, the boundary conditions on the second-order 
variables become 

We should note here that the latter conditions require that aii/az = 0 at the sides 
but do not ensure that U itself vanishes. We return to this point later. As in the 
first-order problem, since not all the boundary conditions can be written in terms 
of $, we must solve (30) in conjunction with another equation relating $ and 8. 

” 
from (16). 

Now, the second-order solutions are likely to resemble the full non-linear solu- 
tions only if we are close to the critical Rayleigh number (say, not more than 10 yo 
above critical). We suppose, then, that near R, it  is the most unstable mode which 
eventually dominates. Therefore, we calculate the circulation forced by this mode. 
The solutions we find would apply if it  is a stationary mode, or a single overstable 
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mode. We exclude from consideration the case of both overstable modes present 
at  once. 

For the above conditions, the convective cell doing the forcing is character- 
ized by a single k, cr at a particular a, R, P ,  T. In  that case, the forcing function 
F is of the form, 

F = s i n 2 m ~ e ~ + ~  C [F,jexp[(r,+r~)y]+F~jexp[(r~+rj)yll ,  (35) 

in which cr is the growth rate of the forcing cell, and r,, r j  are the corresponding 
roots of (24). The asterisk denotes a complex conjugate. The forcing function, 

Fnj = [P(r, + r;)4 - (2cr( 1 + P) + 8m2P) (r, + rT)2 + 4(a: + 2m2er( 1 + P) + 4Pm4)1 

8 

n,j=1 

x [-2mV,j-(r,+r;)W,i]+ PR[P(r,+r;)2-2(a;+2Pm2)] (rlL+.rT)Onj 

-2mPT*[(r,+r:) -2(ar+2m2)] Unj, 

in which U w . = -t[(r,+r;)~,v~+2mu,wi*], 
V ni . = -Q[(rn+rf)vnv~+2mv,w~], 

8 nJ . = -t[(r,+rT)vne,*+2mw,e~], 

W . = -~[(rn+ri*)vnwT+2mw,wi], * 
n1 

where the first-order solutions are written in the form, 

8 

n=l 
0 ,  a, Q(Y) = c (un, vn, wn, 8%) ern'* 

The general solutions of (30) and (34) are given by $ = @H + $I and 8 = B H  + BI,  
where $I and 81 are particular solutions to (30) and (34), @= is the general solution 
of (30) with the right-hand side put equal to zero and BEI is the general solution 
of (34) with @ replaced by $H and G@ by 0. From (30) 

8 

j=l  
$H = I; Cj eSj* sin 2mz e2urt, 

4 

p=O 
where the si are the roots of 

k = 0, c replaced by 2cr and m replaced by 2m. A particular integral of (30) is 

X&s2p = 0, the Xiq being defined by (25) with 

8 

n , i = l  
$1 = sin2mze2'rt c (Pnjexp[(r,+r?) ~ ] + @ ~ ~ e x p [ ( r , * + ~ ~ ) y I ) ,  (37) 

4 

where t,kni = Fni / r r j ,  rni = C X & ( ~ , + r ; ) ~ p .  Similarly, from (34), 
q=o 
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The above solutions satisfy the boundary conditions (32 )  a t  top and bottom 
for all C,. The Ci’s are then determined by substitution of (36)-(39) into the side 
conditions (33)  and solving by Cramer’s rule. 

Given that we know @ and 8, we may h d  the induced differential rotation 7.i 
from (13), if we require that U = 0 at the sides (remember that the conditions (33 )  
only required aU/az = 0 at  the sides). A particular integral of ( 1 3 )  is 

8 

n, j= l  
uI = cos 2mz c (E:; exp [(r, + rj*) y] + U$* exp [(r: + r,) y]) 

+ 2 (Egj  [exp (r, + r;)  y] + @I* exp [(r: + r j )  $1)) e2ur t, 
8 

n,j=1 

{ 
(40) 

in which 

and 

Now U = UH +U,, where ZH, the general solution of the homogeneous part of 
( 1 3 )  (i.e. with V replaced by a ~ , k ~ / a z  and G, by 0) ,  is given by 

U(1) nj = ( U,, + 2mf’T@,J(2gr - P(r, + ~ 7 ) ~  + 4m2P), 

u(2)  ,j = - +(r, + rj*) UnVj*/(2cr - P(r, + rj*)2). 
- 

where yi = 2mPTB(20;-s?+4m2)andsj(j = 9 , l O )  =( -  l)i+1(2gr/P)4). 

The additional constants C, and C,, are determined from the requirement that 
U = O a t y =  *+a. 

(ii) Structure of the solutions 

Computer drawn solutions to the second-order problem are presented in figure 6. 
These are forced by the stationary convective cell shown in figure 5, and represent 
a wide range of Prandtl numbers. Absolute amplitudes are, of course, arbitrary. 

We found it useful to compute the solutions separately for mechanical forcing 
only (G,, G,, G,) and thermal forcing only (Go) as well as the total. As we should 
expect, we found that at  high Prandtl numbers ( 2 102) the thermal forcing com- 
pletely dominates, while for low Prandtl numbers ( 5  mechanical forcing 
dominates. In  all cases, the mean meridional circulation looks like figure 6, 
with four cells (longitudinal rolls when viewed from above). 

Figure 6(a) ,  (b )  show the induced differential rotation and temperature field 
for low P. We note that indeed the entire outer half of the annulus ( - $a < y < 0) 
is rotating faster than 0. We can see from ( b )  and (f) that the meridional circula- 
tion is everywhere thermally direct, i.e. at  each level warm fluid is rising and cold 
sinking. Comparing (a)  with (f) shows that the meridional circulation, through 
the Coriolis force, is ‘sharpening up ’ the vertical shears in the differential rota- 
tion. Consistent with this, comparison of (a) with ( b )  indicates the differential 
rotation is at least qualitatively a ‘thermal wind’ in which positive (negative) 
vertical shear is associated with negative (positive) lateral temperature gradients. 

In the high P case, figure 6 ( c )  shows the horizontal Reynolds stress effect is 
wiped out, since the two halves of the annulus rotate at the same rate, on the 
average. Here the differential rotation is determined entirely by the thermally 
driven mean meridional circulation, as comparison of ( c )  with (f) shows. Compari- 
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son of (f) with (d) ,  and ( d )  with (c), again shows the meridional circulation is ther- 
mally direct, and the differential rotation is a thermal wind. 

At intermediate Prandtl numbers, weighted combinations of 6 (a)-(d), (f ) will 
represent the solutions. For example, for water, the differential rotation induced 
is shown in 6(e). The temperature field in this case is actually quite similar to 
6 (d). From 6 ( e ) ,  it is clear that even a t  P = 7 the Reynolds stresses have signifi- 
cant influence. 

f 
N 

Y+ 

FIGURE 6. Second-order circulations and temperature forced by cell in figure 5 :  (a ) ,  ( b )  in- 
duced differential rotation and temperature, respectively, for small Prandtl number 
( 5  ( c ) ,  (d )  same for large P( 2 lo2); ( e )  differential rotation for P = 7.0; (.f) mean 
meridional circulation for all cases. 

The four-celled meridional circulation can be shown to be present in the non- 
rotating case also. At high P, it is forced principally by the temperature gradient 
in y set up by the y variation in the vertical convergence of heat flux, which 
derives from the constraint that the vertical motion must vanish a t  the non- 
slip side-walls. At low P,  the vertical convergence of v momentum and the lateral 
convergence of w momentum give a similar mean circulation. 

For the aspect ratio a = 2 we have chosen, the differential rotation induced by 
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stationary convection will be qualitatively similar near R, for all 17 < N 2000. 
This is because the inducing cell has no nodes across the annulus. However, 
as we showed in $3, at higher T the most unstable linear mode has more nodes; 
consequently, the induced differential rotation from these will also have more 
structure, and will not simply be fast flowing in the outer half of the annulus. 
Also, of course, as T is increased for a given P,  overstability will eventually set 
in fist .  Since it is unclear for overstable convection which mode or combination 
thereof will be selected, we do not present any details of circulations forced by 
them here, but they should also in general, be more complicated than the low T 
results. 

Note added in  proof. One of the writers (P. A. G.) and G. Willis have very 
recently observed the four longitudinal rolls superimposed on the primary 
transverse rolls in water in a thin non-rotating annulus with aspect ratios 
a = 0.65 and 1.3 for Rayleigh numbers 2 10000. 
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